Prediction of geometric errors of robot manipulators with Particle Swarm Optimisation method
نویسندگان
چکیده
This paper reports on the prediction of the expected positioning errors of robot manipulators due to the errors in their geometric parameters. A Swarm Intelligence (SI) based algorithm, which is known as Particle Swarm Optimization (PSO), has been used to generate error estimation functions. The experimental system used is a Motoman SK120 manipulator. The error estimation functions are based on the robot position data provided by a high precision laser measurement system. The functions have been verified for three test trajectories, which contain various configurations of the manipulator. The experimental results demonstrate that the positioning errors of robot manipulators can be effectively predicted using some constant coefficient polynomials whose coefficients are determined by employing the PSO algorithm. It must be emphasized that once the estimation functions are obtained, there may be no need of any further experimental data in order to determine the expected positioning errors for a subsequent use in the error correction process. c © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Designing an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملPareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope
Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...
متن کاملIterative learning-based minimum tracking error entropy controller for robotic manipulators with random communication time delays
A novel feedback control method for robotic manipulators with random communication delays by combining the optimal P-type iterative learning control (ILC) idea with a minimum tracking error entropy control strategy is presented. The control design is formulated as an optimisation problem with a proper performance index and a constraint. In specific, the performance index implies the idea of the...
متن کاملSaturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 54 شماره
صفحات -
تاریخ انتشار 2006